首页 排行 分类 完本 书单 专题 用户中心 原创专区
笔趣阁 > 玄幻魔法 > 我的学姐会魔法 > 第29章 听懂了吗?

我的学姐会魔法 第29章 听懂了吗?

作者:荣小荣 分类:玄幻魔法 更新时间:2022-09-26 15:40:04 来源:笔趣阁

吧嗒!

人群之后,伊莎贝拉刚刚用叉子叉起来的一块苹果掉在了地上。

她美目圆睁,呆呆的望着前方,惊呼道:“布莱尔!”

“是他……”

人群之中,爱丽丝的脸上也浮现出了一丝讶色,二年级的魔法天才,布莱尔定理,拉乌斯之谜的第一作者,以及他此刻站出来的举动……

这一切都说明,这位学弟的身上,有着足够的值得她注意的理由。

忽如其来的情况,使得布兰妮也怔在原地,不过随后她就面色一变,急忙道:“布莱尔……”

她的话刚刚出口就被另一人打断,黛比看着眼前的搅局者,愠怒道:“你是什么人!”

“我是布兰妮老师的学生,我叫布莱尔。”陈洛看着眼前的女人,平静的说道:“布兰妮老师的时间很宝贵,如果只是这种程度的问题,就不用麻烦我的老师了,我将代替她解答你的疑惑。”

学术沙龙举办的目的,是为了学者们之间的交流。

数学学者们聚集在一起,互相探讨问题,交流思想,初学者们向大学者请教问题,也是常有的事情。

然而,大学者数量稀少,精力有限,不可能解决所有人的问题,这个时候,他们的弟子便会代替他们答疑解惑。

亦或者,是那些弟子们觉得,有些问题太过简单,不值得麻烦他们的老师。

这位叫做布莱尔的年轻人,显然是出于第二种原因。

此时,在场的众人此刻对他的评价只有一个。

狂妄!

太狂妄了!

什么叫“只是这种程度的问题”,他难道不知道,就是这种程度的问题,难住了王都数学协会总部的几位大学者,难住了诺兰王国的所有数学研究者,“这种程度的问题”,包括他们在内,在场的所有人,都没能给出解答!

后方,一名老者看着陈洛,微微皱眉,说道:“这是哪家的小家伙,不知天高地厚……”

卡尔文看着陈洛,面露奇异之色,低声道:“看下去吧,或许这个小家伙,真的有可能创造奇迹呢……”

布兰妮看着陈洛,目光意外中带着一丝担忧,陈洛对她微微一笑,说道:“您先坐在这里稍等片刻,我很快就好。”

说完,他便看向黛比几人,说道:“可以让一让吗?”

黛比冷冷的看了陈洛一眼,让出了一张空的桌子。她根本不相信那位名不见经传的布兰妮能够解决王都九桥问题,更何况是她这位年轻的不像话的学生,这道题可是难住了无数的数学学者甚至大学者,难道他能以一人之力,匹敌整个数学界?

陈洛周围已经围满了人,王都九桥问题流传到亚波城已有一段时间,在场的所有人几乎都研究过,但却没有结果。

如果今晚能在这里得到九桥问题的答案,那么这将是今天晚上参加学术沙龙最大的收获。

虽然这听起来有些匪夷所思,难住所有大学者的难题,竟然会被一个数学新秀的弟子解开------但这不正是数学的魅力所在?

智慧女神并不公正,所有的数学研究者都要承认,天赋这种东西,看似虚无缥缈,却是真正存在的。

他们穷尽一生所钻研出的成果,或许真的不如别人随便搞搞……

在数学的星空下,曾经有无数天才横空出世,以一人之力,照亮过整片夜空。

已经成为全场焦点的陈洛,不慌不忙的拿起羽毛笔,在纸上画了一个奇怪的图形。

这些学者们所谓的王都九桥问题,与陈洛熟知的“哥尼斯堡七桥”问题,都属于一笔画的问题。

“哥尼斯堡七桥”问题是18世纪著名古典数学问题之一。

七桥问题是这样描述的,在哥尼斯堡的一座公园里,有七座桥将某条河中两个岛与河岸连接起来,某天,一位路人的脑海中产生了一个无聊的想法,是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?

王都九桥问题,虽然比“哥尼斯堡七桥”多了两座桥,但本质上都是一笔画问题。

七桥问题曾经难住了18世纪的许多数学家,最终解决它的是欧拉,历史上最伟大的数学家之一。

想起欧拉,陈洛就不由的想起了欧拉的老师伯努利,而伯努利的老师,叫做莱布尼兹。

欧拉还有一个学生叫拉格朗日,拉格朗日后来收了个弟子叫柯西------这些名字,曾经一度是陈洛大学时期的噩梦。

直到现在,他还无法忘记曾经被这些人支配的阴影。

欧拉不仅解决了七桥问题,在解答问题的同时,还开创了数学的一个新分支------图论与几何拓扑,与此同时,他还将此类问题总结归类,得到并证明了更为广泛的有关一笔画的几条结论,人们通常称之为“欧拉定理”。

从那以后,曾经困扰过无数大数学家的难题,就变成了小学奥数的送分题。

陈洛没有兴趣教这些人小学奥数,但是他必须顾及布兰妮老师的面子。

收起这些心思,他重新望向纸上的图形,一笔画问题虽然简单,但这其中却涉及到了一个重要的数学思想,将一个复杂的实际问题抽象成合适的数学模型,这种数学思想,在十八世纪才开始萌芽,按照这个世界的数学发展水平,要产生这种现代的数学思想,大概也要等上几百上千年。

陈洛指了指纸上的图形,说道:“九桥问题,可以这样等效表示,我们把每一块陆地考虑成一个点,连接两块陆地的桥以线表示,便得到了纸上的图形,如果可以从一点出发,不重复的一笔画出这个图形,则说明可以从一块陆地出发,不重复的走遍九桥,再回到起点。”

一名学者距离陈洛最近,刚才就看到了他在纸上所画的图形,正一头雾水时,听到了他的解释,顿时恍然大悟,忍不住道:“居然可以这样,将复杂的现实问题简化为几何图形……,这是多么精妙的思想!”

周围的学者也都研究过九桥问题,他们拥挤到桌前,低头看了看陈洛的图形之后,立刻就意识到,这正是九桥问题的简化。

短短的时间之内,周围的大部分人,都收起了对眼前这位年轻人的轻视之心。

无论他能不能解决九桥问题,仅仅是这种精妙的思想,就能让他赢得所有人的尊重。

这已经将九桥问题,向前推动了一大步。

道格拉斯面色平静,看不出他的情绪,黛比的脸色则是变的有些不太好看,看了陈洛一眼,说道:“你……”

“你先不要说话。”她刚刚开口,便被身旁一人打断,那人看都没看黛比,用请教的眼神看着陈洛,说道:“请您继续。”

黛比脸色涨红,却也不敢再说什么,对方是亚波城有名的学者,地位比她的长辈还要高。

陈洛对那学者微微点头,继续道:“很显然,除了起点和终点以外,当某人由一座桥进入一块陆地时,他必定将从另一座桥离开,因此,除起点和终点,每一块陆地与其他陆地连接的桥数必为偶数……,我们将这图形上,由奇数条线段连接而成的点,称之为奇点,由偶数条线段连接成的点,称之为偶点……”

布兰妮老师站在陈洛身后,脸上露出恍然之色,喃喃道:“要想从起点出发,最终回到起点,那么必将到达所有的点,又离开所有的点,所以,只有所有的点全是偶点,九桥问题才有解……”

“正如布兰妮老师所说。”陈洛转过身,微笑的看着布兰妮老师,说道:“帝都九桥问题,明显存在一个奇点,一个只能进入不能离开的陆地,因此,不存在一种方法,能让人从起点出发,最终回到起点,且不重复地通过所有九桥……”

“综上,帝都九桥问题,无解。”

陈洛说完,目光望向黛比等人,问道:“你们听懂了吗?”

目录
设置
设置
阅读主题
字体风格
雅黑 宋体 楷书 卡通
字体风格
适中 偏大 超大
保存设置
恢复默认
手机
手机阅读
扫码获取链接,使用浏览器打开
书架同步,随时随地,手机阅读
收藏
换源
听书
听书
发声
男声 女生 逍遥 软萌
语速
适中 超快
音量
适中
开始播放
推荐
反馈
章节报错
当前章节
报错内容
提交
加入收藏 < 上一章 章节列表 下一章 > 错误举报